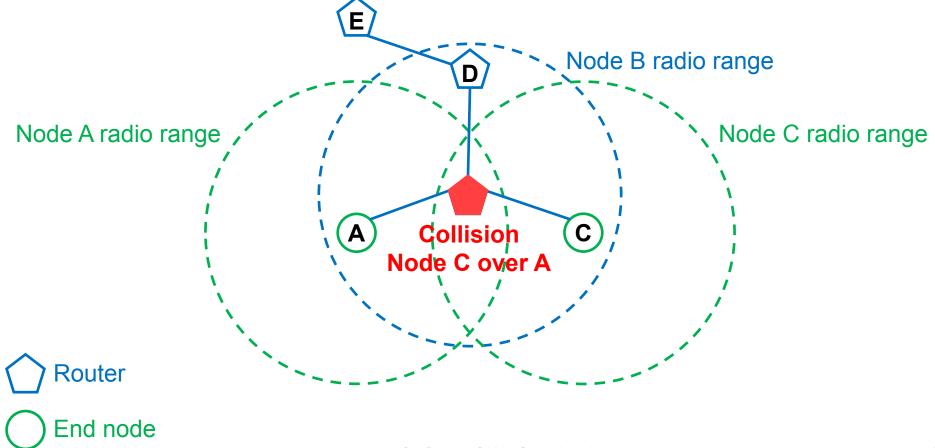
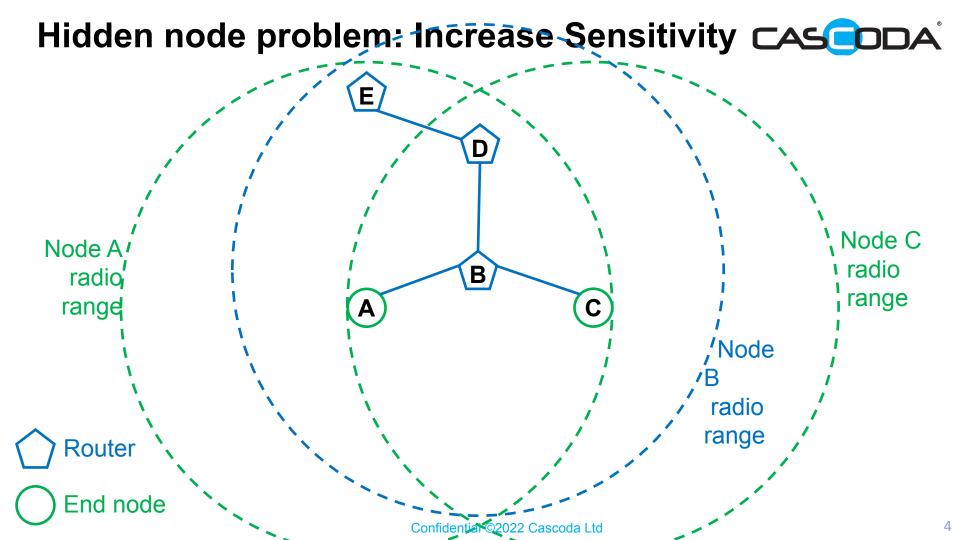


The invention of a new type of radio demodulator for low power wireless

Confidential ©2022 Cascoda Ltd


Hidden node problem (CSMA-CA):



CAS

Hidden node problem (CSMA-CA):

Improving link-budget in IEEE802.15.4

- Increase transmit power
 - National regulations limit transmit power
 - 10dBm worldwide
 - 100dBm with local restrictions (US)
 - Power amplifiers inherently inefficient
 - Typically 15% efficiency at OdBm 22% efficiency at 10bBm
 - Inexpensive CMOS process
 - Voltage swing limits output power
 - External PA often used
 - Delivers better efficiency using specialist processes, but at a cost
- \cdot Need to increase receive sensitivity
 - What are the implications?

Improving link-budget in IEEE802.15.4

Receiver Sensitivity, P_{min}

P_{min}=kT.W.nf.SNR_{min}

kT: k is Boltzmann's constant, T is absolute temperature (=-174dBm)
W: communication channel bandwidth (2MHz)
nf: noise figure of the receiver

SNR_{min}: minimum ratio of baseband signal power to noise power at the demodulator (for specified PER)

Ideal Sensitivity @ 2.4GHz

Ideal receiver sensitivity, in IEEE802.15.4, P_{min_i} [1]

 $P_{min_{i}} = kT.W.nf.SNR_{min}$ = -174dBm + 63dB + 0dB - 2.2dB= -113.2dBm

[1] S. Lanzisera et al., "Theoretical and Practical Limits to Sensitivity in IEEE 802.15.4 Receivers," International Conference on Electronics, Circuits and Systems. Dec. 11-14, 2007

Confidential ©2022 Cascoda Ltd

Power Consumption & Sensitivity @ 2.4GHz

	Above Ideal		Receiver	Receiver Current
	Front-end nf(dB)	Demodulator SNR _{min} (dB)	Sensitivity (dBm)	(mA)
NonCoherent	5.7 [2]	6.5	-101	15
Coherent	11.7	2.5 [3]	-99	16+

- Non-coherent demodulation:
 - Allows for a low-power receiver implementation, at the expense of losses in the demodulator (high SNR_{min})
- Coherent demodulation
 - Requires a high-power demodulator due to the requirements of the phase/frequency detection algorithm
 - To keep power consumption down, the front-end is starved of power, hence a high noise figure
- We need to do a *LOT* better than this!

[2] W. Kluge et al., "A Fully Integrated IEEE 802.15.4 Compliant Transceiver for Zigbee Applications," IEEE J. of Solid-State Circuits, vol. 41, no. 12, Dec. 2006.
 [3] Assuming coherent demodulation, with an average 2.5dB loss due to phase/frequency rotation inaccuracies affecting SNRmin
 [4] Typical power consumption for a device of this type, assuming 3V supply

Possible improvements

- Lowering front-end nf:
 - $nf=1+\alpha/P_{LNA}$ [4]
 - nf: noise figure of the receiver
 - **a** : process related factor (bigger for smaller geometries)
 - P_{LNA}: power consumed in the LNA
 - There are limits:
 - As *nf* tends to 1, P_{LNA} tends to infinity
- Lowering demodulator power consumption:
 - IEEE802.15.4 demodulation only needs 4 bits in the ADC
 - Extra resolution only needed for phase/frequency correction
 - Coherent schemes need -8 bits to be sufficiently free of timing errors

Cascoda's patented invention: Double-correlation demodulator

- Improvements over coherent:
 - Frequency detection performed after correlation
 - No complex phase/frequency computation required
 - Reduced power WRT coherent
 - Only 4 bits required in the ADC
 - Reduced power WRT coherent
- RF front-end improvements:
 - Demodulator improvements allow more power to be supplied to the RF front-end, lowering *nf*
 - Careful LNA design required

Cascoda's implementation

	Above Ideal		Receiver	Receiver Current			
	Front-end nf(dB)	Demod-ulator SNR _{min} (dB)	Sensitivity (dBm)	(mA)			
LowIF, NonCoherent	5.7	6.5	-101	15			
LowIF -> b-band, Coherent	11.7	2.5	-99	16+			
Cascoda	5.7	2.5	-105	14			
Best of both worlds:							

Power consumption of non-coherent Demodulator performance of Coherent

Certified Module Platform – Chili2

THREAD

CERTIFIED

TRUSTZONE

The world first standards-based secure ultra-low-power IoT module

🔨 Long Range: -1 Km outdoor range, 50m indoor range

Patented radio innovation. Greater reliability lower installation cost

Ultra-low-power: 20mA in transmit, 15mA in receive, -1µA sleep

Minimization of maintenance cost as battery lasts longer

Security: Crypto engine, secure boot, memory protection, TRNG Highest level of security in both M23 TrustZone® hardware and software

Scalability: Intelligent IPv6 mesh-networking technology

Allows scalability to achieve massive-IoT deployment

- Certified: FCC, CE, IC, Thread, OCF Deployed in smart-infrastructure in Europe & Asia
 - **Ready for Matter:** In development by Cascoda

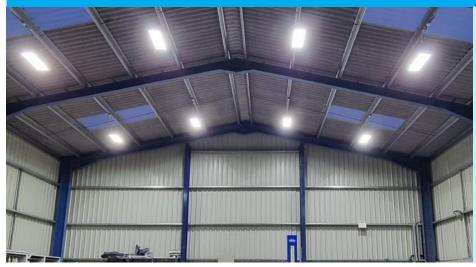
Confidential ©2022 Cascoda Ltd

Use case – Smart City

Taiwan, Hong Kong, Macau

Smart parking meters

- Single/Dual bay
- Built-in camera
- Contactless payment


Smart street lighting

- Pollution monitoring
- Flood monitoring
- Integration with:
 - Traffic systems
 - Weather systems
 - Safety systems

Use case – Smart Building

UK

• Smart warehouse lighting

- Local (app control)
- Cloud BMS control
- Certificate-based access control
- Integration with:
 - Office lighting system
 - Safety systems

Contact us

Bruno Johnson b.johnson@cascoda.com

+44 2380 638 111